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Abstract-

A new method is presented for the computation of electromagnetic scattering from

axiaUy symmetric bodies. To allow the simulation of inhomogeneous cross sections, the

method combines the finite element and boundary element techniques. Interior to a

fictitious surface enclosing the scattering body, the fmite element method is used which

results in a sparse submatrix, whereas along the enclosure the $tratton-Chu integral

equation is enforced. By choosing the fictitious enclosure to be a right circular cylinder,

most of the resulting boundary integrals are convolutional and may therefore be evaluated

via the FFT with the system is iteratively solved. In view of the sparse matrix associated

with the interior fields, this reduces the storage requirement of the entire system to O(N)

making the method attractive for large scale computations. This report describes the

details of the corresponding formulation and its numerical implementation.
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Chapter 1

Introduction

A restraining factor in the numerical simulation of three-dimensional structures for

electromagnetic scattering computations is the storage requirement associated with the

chosen method. For sub-wavelength structures traditional methods [1] have been found

to work well. However, for structures spanning several wavelengths, the storage require-

meat limits the use of these methods.

For the special case of axially symmetric structures or bodies of revolution (BOR), a

reduction of the storage requirement is accomplished by reducing the three-dimensional

problem to a set of two-dimensional ones. Several moment method codes have been

developed for the solution of these ([2] - [7] and others). However, for large structures

the required storage of O(N_), where N denotes the number of unknowns over the BOR

cross section, limits their use.

To further reduce the storage requirement, hybrid finite element methods ([8]-[12],

etc.) may be used, since the storage associated with the finite element method is O(N)

in contrast to the O(N _) requirement of moment methods. These methods differ from

one another primarily by the application of the radiation condition. The most accurate
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methodenforcesthe radiationimplicitly throughanapplicationof theboundaryintegral

equationovera fictitious boundaryenclosure[11], and in this casethe storageis still

O(N_), where Nb is the number of unknowns on the boundary. However, through a

judicious choice of the enclosing boundary, the storage requirement can be reduced to

O(N). This can be achieved by selecting the enclosing boundary to be rectangular or

circular [15], [16], making some of the integrals convolutions which can then be evaluated

via the FFT when an iterative solution scheme is employed.

The proposed method combines the finite element and boundary element methods for

the solution of inhomogeneous bodies of revolution. The coupled potential equations [10]

are discretized via the usual finite element method, and the resulting system is augmented

by a discrete representation (via the boundary element method [13]) of the Stratton-Chu

equations [14]. By choosing a right circular cylinder to enclose the scatterer, some of

the integrals become convolutions and their discrete counterparts are then evaluated

via the FFT in conjunction with an iterative solution procedure as was done in the

two-dimensional case [15]. With some care, the storage is reduced to O(N).

In this report, we describe the formulation for the proposed finite element - boundary

element method as applied to the body of revolution. Some preliminary results are shown

to be in reasonable agreement with the method of moments (MOM).



Chapter 2

Analysis

Consider the body of revolution (BOR) illustrated in fig. 2.1. To employ the proposed

finite element - boundary dement (FE/BE) method, the BOR is tightly enclosed in a

fictitious finite length cylinder, which divides the entire space into two regions, i.e. the

one enclosed by the cylinder and the other exterior to it. Since the interior region is

generally inhomogeneous, the finite element method is suited for formulating the fields

of that region, whereas the boundary element method is applicable for the exterior free

space region. A usual approach [3] for treating BORs is to introduce a Fourier series (in

the azimuthal coordinate _b) representation of the fields, reducing the problem to a set

of two-dimensional ones. The finite element - boundary dement method is then used to

compute each modal field and the final result is found by adding the modal fields.

In the following, we present the finite element and boundary element formulations

for each mode. First, the finite element formulation is developed.



V
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X

Figure 2.1: Genera] surface of revolution.
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2.1 Finite Element Formulation

In this section, we derive the analytical coupled azimuth potential (CAP) equations

[17] which are then discretized via the finite element method.

2.1.1 Analytic CAP Formulation

Max-well's equations in a source free region (a • j_ time dependence is assumed and

suppressed) are given by

V X E(_) -" -jt_p_" (2.1)

V X _'(W) = jt_e]_ (2.2)

V-D'(_) = 0 (2.3)

V-_(_) = 0 (2.4)

(2.5)

For axially symmetric media, the fields may be represented as Fourier series in the

cylindricalcoordinate_bas

_(_)= _ _(p,z)e j_÷ (2.6)
ttttz --_

_37(_)= _ )_(p,z)eJ _
ltltlt Z _OO

and when these are substituted into MaxweU's equations (2.1) and (2.2), we obtain

(2._)

(2.s)

(2.9)

(2.10)
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(2.11)

(2.12)

(2.13)

with

R-- k,op (2.14)

Z = koZ (2.15)

to be referred to as norma_zed coordinates. Substituting _: of (2.13) into (2.8) gives

•,", = .if,. [,- _(Re,._) + Rz, _,(Rh,._)] (2.16)

where

f,n : IROn2 - mS] -: (2.17)

I¢2 -- #,e, (2.18)

Substituting e,.p of (2.8) into (2.13) we obtain

(2.19)

Substituting/_p of (2.9)into(2.12)yields

•,.. = .if,. [,r,_(R_,._)- R., fi(_,._)] (2.20)

Substitutinge,.zof (2.12)into(2.9)yields

h,.p = jr,. [m_(Rh,._) - Re, _,(R_,._)]

9
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Equations (2.16) through (2.21) may be written in compact form as

• _ × 7_(R, Z) " jfnL [m_b × V,_be - p_.R_,_h] (2.22)

× _(R,Z) -- j.f,n [n_ × V,_bh -t- erRV,gge] (2.23)

_._(R,Z) ffi _e/R (2.24)

_._(R,Z) - _bh/R (2.25)

where

V, --- _ _ -i- _ _ (2.26)

Rewriting (2.10) and (2.11) as

Rv, .(_ × L,) = -j_,¢, (2.2T)

RV¢-(_ × _m)"- jP,¢a (2.28)

and then substituting (2.22) sad (2.23) into them, we obtain the CAP equations

e,'¢e
V,. [f.(_.RV¢¢. "!-m_ × V,_'h] -!- T - 0 (2.29)

v,. [f,_O,,RV,¢h- _ × V,¢,] + _"¢----_= 0. (2.30)R

This system may be written in operator form as

L_, = 0 (2.31)

where

aad

vy. [f,_c,Rv,] +_ ,nvdf,_ × v,] 1
L - (2.32)

-mV,[/,_ × v,] V,. [f,_,,RV,] + _-

¢ = [_e Ch]T (2.33)
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Figure 2.2: Cross section of a generating surface enclosed by the fictitious boundary ra.

2.1.2 Discretization of the CAP Equations

To discretize (2.31), we first enclose the generating contours of BOR in a fictitious

boundary ra and the axis of symmetry as shown in Fig. 2.2. The contour l_a is chosen to

be rectangulax in shape thus generating a right circttlar cylinder. The region interior to l_a

is divided into Ne lineax triaagtdsr elements and within each element the corresponding
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weighted residual expression is written

.//RN_(R, Z)Ro. dS e - 0 (2.34)

where (RN_) is the weighting function and _ is the residu_l. Further, N_ is the usua_

linear shape function found in any finite element book [18]. Using this definition, (2.29)

and (2.30) may be written

/f +
S"

and upon using the identity

we obtain

(R_t)v,. _" = v,. (R_t_ °) - _'. v,C_Vt)

S"

+,,_:t - f_ (,,Rv,_,+,_ ×v,¢_),v,cR>_t)]dS"=o

Further, by invoking the divergence theorem (2.38) and (2.39) may be written as

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)
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where_ is the outward normal along the boundary, C e, of the eth element.

these may be simplified by making use of (2.22) and (2.23), yielding

-/c. RNt(j_,,)a" = 0

×v,¢.)], v,(R_)+ #,.¢h_:}dS"
Se

Finally,

where

(2.42)

+/c. RN_(Je'nt)dle = 0 (2.43)

e._ = _. _ (2.44)

h,n, = i._ (2.45)

with

= _ X _ (2.46)

To form a system of equations over the eth element, the fields are represented as a

linear basis expansion as

3

j----!

3

_h(_, z)= _ _(R, z)
jffil

(2.47)

(2.48)

Substituting these into (2.40) and (2.41) yields

j----1

-m_ ×v,(RN;),v,(R_v,')¢_}ds_]

13



- ._'c.R.vt0"_,)a" = o

2; {[-I._..Rv,(_rZ).v,(_)+..NZ_;],o_,
jffil

+_ ×v,(Rar]),v,(Rar_)e:_}dS_]

+ Jc. _v? Ue,,,,)dl° = 0

(2.49)

(2.50)

To proceed further, it is necessary thst we evaluate the integrals over the surface of the

element.

Assuming _r and/z, are constant within a given element, (2.49) and (2.50)

where

,,_,=//[-f,,,Rv,(RJv,')v,(_;) +_vZ_v;]d_"
S=

b_j -// [m_ x V, CRN_). V=CRN_)g,_=./] d,.,ce

(2.53)

(2.54)

Summing over all elements to obtain a solution for the entire problem region, our system

becomes

N. 3

_ [_:a_j_e=_ - b,_._] - _ _.h._,o = 0 (2.55)
e=l jffil s=ffil

N. S N.

E E [b,5_=5+.:.,',_,]+E _,;_--=0 (256)
e----I j=l Bm--I

where

c_I =/r. RN_ P_dI" (2.57)
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and P_I is the pulse function equal to unity in the sth element. Note that in (2.55) and

(2.56) the contour integral contribution canceled out except along the boundary ra as

shown in Appendix D.

In block matrix form (2.55) and (2.56) may be written

A'. A_.zAL A',_-B.. -B.z -B., -B.d O -C.°

A_. A}z A}_ A_d -Bz° -BH -Bz, -Bzd 0 0

A_.°A_z A_..A_d -B.. -B_z -B.. -B.d 0 0

A_ A_z A_ A_ --Bd,,-Bdz -B,_ -B,_ 0 0

B, B.z B, B.d A_.. A_z AL A_.d C, 0

Bz. Bzz Bz, Bzd A_ A_z A_, A_ 0 0

B,. B,z B. B,d A_. A,% .4:,A,_ o o

Bd,, BdI Bh Bda A_ A_I A_ A_ 0 0

em_

e_i

em6z

em_d

hm¢_

hm÷I

hm_z

hm4,d

3 emt

jhmt

_'T
r

=lo o o o o o o o o o (2.5S)
L d

in which we have substituted _b, and _bh with em¢ and hm_, respectively, and

N,

A e = _ t_a,ej (2.59)

/%

A _ = _/_a,_ (2.60)

B - _ bej (2.61)
e=l

c = _ e,'., (2.62)
m=l

15



The subscripts on A e'_', B and C refer to the various regions of _ and its boundary. The

dements of (2.59) - (2.62) are derived in Appendix E and are listed as follows

•._ ffi[-,_f,_;Q_o- (_f,_;+ _,_,'.)Q, - 2(-yfo;+ -y_,_$)Q2o-2(Zf_ + _-f_')Q2_

-_Q_2 - (4_ + _)Q_

• • 1

+7_ 7jPs0]_2.63)

and

m

_-_-_,_ , - _.'.,_)Q_o+ 2(_ - _-_;)Q,o]

where the Ps and Qs are defined in Appendix E. The dements of C are

(2.64)

(2.65)

where

_ = _ =

<I _½(_"± _)(_ + g) _(_2 + _R_ + _;_)1

_ ffi_[½_(_ + _)-_(_ + _P_ + g_)]

for I'a_

upper sign for r_l
lower sign for r.3

(2.6_)

To form a complete system, (2.58) must be appended by a discrete version of the

boundary integral equation to be discussed next.
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2.2 Boundary Integral Formulation

The electric and magnetic fields are represented in the unbounded region by

_(._) = _v.(._)+ _(_) (2.67)

where _-i(_) and _(_) are the incident fie/& and the scsttered fields are given by the

Strstton-Chu equations [14].

S'

+ [_'X _(_)] x V'g(_,_)} dS' (2.69)

S'

+ [g'X _(_')] X V'g(_,V')}dS' (2.70)

where F' and _' are the source and observstion points, respectively and

e-Jk0R-_'[

g(V'_) = 4,R-Wl (2.71)

is the free space Green's function. It is convenient for computational purposes to elimi-

nste the presence of the normal field components and after some manipulation we obtain

+ [_'X _(_')]X V'g(_,_')}dS' (2.72)

+ ["'X 'Vo']_F(')] X V'g(',_)} dS' (2.73)

17



For _? = F', the integrals in (2.72) and (2.73) are singular and by removing these singu-

larity, they maybe rewritten in terms of principal integrals as

t./

+!

S'

' }-j='=_" ["- V x '_'(W')] V"9(_,_)+ [_/x _]7'(_)] x Vtg(?,"ff) d,5"_' (2.75)

where we have Mso made use of (2.67) and (2.68). These must now be enforced on the

boundary so that they can be coupled with the FEM equations.

Initially, we will allow S _to be a general surface of revolution and wili then specialize it

to the case of a right circular cylinder. In the next section, we derive the modal boundary

integral equations by expressing the fields and the Green's functions as a Fourier series

in the cylindrical coordinate _b, The resulting modal equations are then discretized and

the resulting subsystem is augmented to the finite element system previously derived.

2.2.1 Derivation of the Modal Boundary Integral Equation

Consider the general surface of revolution indicated in fig. 2.1 whose tangential unit

vectors are denoted by _ and t. The angle v is that between the _ and the z-axis and is

negative when _ points toward the z-axis. Referring to the figure, we may represent the

various unit vectors as

= _cosvcos_+_cosvsin_- _sinv (2.76)

= -_ sin _ + _ cos _ (2.77)

18



i : _sinvcos¢+_sinv_+_.cosv (2.78)

= tsinvcos6+Scosvcos¢- _sin6 (2.79)

= _sinvsin6+_cosvsin6+ ¢cos6 (2.80)

= "_cosv - 5 sinv (2.81)

Expressing the primed unit vectors in terms of the unprimed unit vectors results in

= t' [sin v' sin v cos(6 - 6') + cos v cos v l]

+5' [cos v' sin v cos(6- 6') - cos vsin v_ + ¢' [sin v sin(6 - 6')] (2.82)

fi= _'[sinv'cosvcos(6 - 6')- sinv cosv_

+ fi'[cosv'cosv cos(6- 6')+ sinv sinv_]+ ¢' [cosv sin(6- 6')] (2.83)

= -/'[s_,/sin(6-6')]- 5'[_os,/sin(6-6')]+ _'[cos(6-¢)]

= -_' sin(6 - 6') + ¢' cos(6 - 6') (2.84)

Taking the 6 component of (2.74) a_d noting the identities,

_.(5'x _) = -,_a,sin,/sin(6-¢)- _a, cos(6-6') (2.85)

¢. V'g - -¢-Vg (2.86)

_'. Cv'× _)=_ [- _(p'_o_,)+ _(_oa,)]

=
[_'E, sin(6 - ¢') + 5'E_ cos(6 - 6') + ¢'E¢ cos v' sin(6 - 6')]" V'g

(2.87)

(2.88)
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we may rewrite (2.74) as

Further,by carryingout the derivativesof the Green's functions,we have

J,., 4,')+,,oH,
1 _(,_H,)] since- _,'_-1

+ (__n(_- _')+ E_Lo'co,V cos(_-_')

1 dg } p_dqb_dr--pcosv' + (z-- z') sin r' cos(@ -- @')]) .Rod'_

in which

(2.90)

_o= x/_+ ¢_-2p¢cos(_-_')+ (z-z,)2 (2.91)

To generatethe correspondingintegralequationsforthe modal components, the fields

and Green's functionmay be expanded as

_('F)= _ =@,_(p,z)e _'_ (2.92)

O0

r/o_l'(F) "" _ T_(p,z)c _'=_ (2.93)
Wit =" _OO

_0

g(_)(_,?_)'-_ g(&)CP,P',z,z')c_"(*-#) (2.941

20



where

with

1 r,,'_(P' u, z)e-_"'dx,z,,(p,z) = _ _

g(°)(P'P"Z'Z') = gn(P'P"Z'Z_) = _ J o 4x'R

g(J)(p,p',_,=')= _ [g.-,(p,p',.,z') + g,,+,(p,p',z,=')]

= - cos u---=- cos(nu)dt,
r 4rR

J [gn-l(p,p',z,z') - gn+l(p,p',z,z')]g(')(p,p',z,z') = -_

J /_' e -.i_°Tz= -- sin u-.--.=- sin(nu)du
o 47rR

1 /,r 1 dg cos(nu)dug(°)'(P'P"Z'Z') = 9_n(P'P"Z'Z') = _o o - _d--R

1

9(1)'(p,p',z,z') = _ [g_n_l(p,p',z,z J) + g_n+t(p,p',z,z')]

1 /: ldg= -_-_ cos_=_RdR cos(._)d_
J

g(2)' (p,p,,z,z,) = --_ [g_n_,(p,p',z,z') - g_n+,(p,p',z,z')]

j /'. ldgsm u.-_-..-_ sin(nu)du
ffi _o o R dR

(2.95)

(2.96)

(2.97)

(2.98)

(2.99)

(2.100)

(2.101)

(2.1o2)

= _/p2 + pn _ 2pf cosu + (z - z') 2 (2.103)

Substituting these into (2.90) yields

1 nO_ i_,_(p,_,)_' _ _._(p,.)g""
Y't_.--O0 nu_--O0

_ ----'--00 Wt "_----O0

1
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- e,,,,,,(...- _)_g¢._)'+ _,,,,,o_(,,,,_s,.,'g¢.,'-)'

• ? I-,o_,,, 9,.,+(.,- .,')m,.,'g¢.")')}PC"-")"t",o'd¢,'_ (2.104)

and by multiplying each side by e -j_ and integrating over (0, 2_r) to extract the ruth

modal equation results in

_'e,,,,÷(.o,.,')= e_,(,o,_)

'" - si. ,-p cos t, g_ + (z z') kop'dr

aftercombining terms and where we have used

(2.105)

_o { 2_" rn=n

2_-

_(m-n)'_'d@' - (2.106)

0 otherwise

For the case in which r(= r=) is the generating cross section of a right circular cylinder

(indicated in fig. 2.2) the integral in (2.105) m&y be written as a sum of three integrMs,

one over each side of r=(- _'_ffil r_) as

_e,._(p,z)= e_(p,z)

-_....(z- z_)kog_)'+ e....ko(_- _.)g_'} kop'd:

-emt(z- z')kog_)' + emq_ko(p2g(mZ)' - Pg'm)} kop2dz'

-emt(z - z')kog_)' - emq#Icofz- z')g_)'} kop'd:' (2ao:)

22



Introducing the normalized coordinates

• R=kop

Z ffikoz

(2.107)becomes

1 ek,_(R,z)fi_,._(R,z)=

+/0_{_,_,¢..',-__,,'_..,),'.','+u,,..)[,_'+_.._'."1
+./(./e,.,)(z- z_)9_)'+ ,,.,_(z- z_)o_)'}R'dR'

+./(.i_.,,)(z- Z')g_)'+_,.,(R_g_)'- Rg_.)}R,az'

+j(je,._)(z- z')o_)'- e,,,_,(z-z'_,,o)q.-/°m j R'dRI

This equation and itsdual are discretizedin the next section.

2.2.2 Discretization of the Modal Boundary Integral Equation

(2.108)

(2.109)

Consider the fig. 2.2 where the rectangular boundary is divided into Na boundary

dements and are equal in length along the r,_. Along the boundary, the fieldsare

expanded intopulsebasisfunctionsas

Iv,

v(R',z')= _ vj+½e(R_+½-R',z,+½- z')
j-I

where U represents any one of the components em¢, hm¢, e,nt or hint and

P(R,+½- R',zj+_ - z') = {
1 if Izj+_- Z'l _<--_-,In_+_-n'l _<

0 otherwise

(2.110)

(2.111)
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and

Substituting the pulse basis expansion into (2.109) and simplifying yields

1
_,,,,,(R, z) = ,',,,,(R,z)

N {"4" E {/_¢}5+½/P_ jg_)RtdR r
j=N.z-I-N._+I P-_+I "

N., +N._ {
j--N.,+I Z,+,

N.I

+ _=l{{hm,},+½ 41c'+'-]g_)R'dR '
• jp_

+_<R,_,)%+_4_"' __"R'd_ +U_,)_4"_+'[_' +_'_m"]R'd_"
J % .,,%

+{ie,_,}_4 Pv+, rPv,, Z,)g_),R,dR,t2.113 )R,. _(z-Z,)O_)'R'dR'-{,.,}_+½]_ (Z-

Proceeding to point-match at the boundary element midpoints, we have

•,,,,(R,+_.,z_)

+ _ {_,0_+_ ./_)._'d.¢
if N=, +N,_ +I +I
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jmNsl +1 1. '_ 1" .,tl

N,,I l_'+'
j=a .,i_

J R_ J R#

,,R, i(zl -Zl)g_)'R'dR'-{_-_)s+½1 _+'j_. (zI- Zl)g_)'R'a114)

forthe fieldpointson contours ral mad ra3 mad

_e.,_(/_,z_+_)= •.,,_(_,Z_+_)

+ _ {h,n_}j+½ jg_)R'dR'
Ja:AraX +Na2+l +1

+{Je,_,},/,+j(Z,+½- Z,),_)'R'dR,+ {e.¢},+½/_. (Z,+½ - Z,)g_)'R'dR'}

N_ +N_

./=N._ +1 Z_+a

z_

"-'{ IR,÷,
./--1 g R_

/R,÷, - jg_)'R'dR' + {Jhn_t).i/_+' [g_)+ jrng_)']R'dR'+{(_'_)'},+}j.,,., .,_
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z,)0_)'R'_,_ 11e)+{_')_ J+_ "i(z'+t- Z'lg_)'R"t_- fe"d_÷i JR, (z_+_-

for the field points on contour r6_. The _bove set of equations may be written more

compactly as

where the matrix D arises from the derivative

(2.117)

and C is a matrix comprised of 'l's along the diagonal and superdlagonal. Also, the

subscript ½ represents evaluation at the boundary element midpoints. In a parallel

fashion, the dual of corresponding (2.116) may be written

The matrices in (2.116) or (2.118) are 3 × 3 in size, each element of which is a

matrix corresponding a particular integration and observation (field point) contours.

Each element of the subma_rices is In Appendix F. For non-self-cell terms, the integrals

axe evaluated via open formula numerical integration schemes. The seIf-ce]] terms are

given in detail in Appendix F. The integrals involving gm are computed via Romberg

integrationwith a specifiedconvergencecriterionto ensure accurate evaluationfor any

mode.
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Finally, augmenting finite dement system with that formed by (2.116) and (2.118),

we derive the system

A:. AI_ AL Ald -B.. -Bo_ -B._ -B._

A_a A_! A_z A_d -BIa -BH -Blz -Bid

A_ A_ A_ A_ -B_ -Bd_ -B_ -B_ 0

P_C 0 0 0 _pt _Q 0 0 0

B_,, BH B_ B_d A';, A';r A';_ A';d o

B,. B,I Bz, Bzd A_za A_zl A_z, A,_d 0

Q 0 0 0 Qt P_C 0 0 0

0 --Caa

0 0

0

0

_Qt

0

0

0

0

_p,_

= [0 o o o (eL_)._ o o o o

which is to be solved iterstively and where

Q = Q"-_C + Q'_'D

em¢_

em_l

em_z

emend

Jemt

jhmt

_T

{h_,}._j(2.ng)

(2.12o)
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Chapter 3

Scattered Field Computation

In the fax field the scattered fields axe given by

(3.1)

(3.2)

We wish to compute the radar cross section given by [19]

= lira 4_rr2 I_'(_)1 _ Um 4_rr2 IH_(F)ln

,-_ i_(_)12= ,.= i_'(_)12

For TM, polaxization we have

M

mffiffil

M

m----I

and for TEz polarization we have

M

E_(r,e,_p) = e_(r,O) + 2 _ e_,Cr,8)cos(m_)
m_---l

M

_e_,(,-,o,,_)= 2j _ h',(,-,o) _i,,(,_,_)
m----I

(3.3)

(3.4)

(3.5)

(3.6)

(3.?)
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These combined with a unit amplitude incident field implies that (3.3) becomes

lim 4_r 2
_TMs = r-...oo

uT£, --- lira 41cr2
Y ..._ Oo

i2]_ <,_(,,e)_(m_) + h; + 2 y: h_(,,0)cos(,_) (3.s)
mfffil m=l

e_ + 2 y_ e_,(r,O)_s(m,) + 2 h_÷(r,O)an(rr_) (3.9)

We had previously discretized the Stratton-Chu integral equation for field points on

the integration contour as given in (2.113). Eliminating the principle value factor for

observation not on the integration contour, the corresponding scattered field equation

may be written

,:,(R,z)_-/o_{J_-,e)-J#CR'h.,)e)'+(_h.)[_)+J-e"]

+./(./e,,.)(z- z3)o_)'+e,,,,(Z- z3)o_)'}R'dR'

+j(j_,)(z - "'" (2), - R '

+/o_{-_h.,e)-_#CR'h.,)e)'+(j_,)[,_)+J-e)']

+j(je=t)(Z- Z')g_ )'- em+(Z- Z')g_ )' } .l_dR' (3.10)

We wish to evaluate this expression for large kor = x/R 2 + Z 2. For large r

X/R 2 + R n - 2RR' cos u + (Z - Z') 2 = ko,

I

Z Z' RR'
cos u (3.11)

kor kor

Thus, we may write (2.97)

I e-i_r jI, TA JofreJ_C_"c°s(mu)dug,_( R, R', Z, Z') 2k0----7e -o- (3.12)

Noting that the integral is related to the Bessel function of the first kind, we may write
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(3.12)as

where we have used

•-)h°"_jz,-- Ol,,,(R,,o)
o,,,(R, R', z, z') __ 2_r -

j-a.(#)=;

f,,,(__,o)= :-,_J,,,(_vsino)

(3.13)

(3.14)

(3.1s)

and the fact that

R =/er sin 8 Z = korcos8 (3.16)

Likewise (2.98)- (2.102)become

O_)(R,R',Z,Z') ,., --'-J_°'_z"=° f=(R',O) (3.1_)
- 2kor

_z_)(R,g,Z,Z,) ,,, e-i_',jz'_e, to,

g,,,(R,R,z, z') _ i_,-#_" ,
r 2_r 'Fz'=#lm(R''e) (3.19)

g_)'(R,I_,Z,Z') _" "Jk°e-J_"eiZ'c°'s f=n(R',8) (3.20)
r 2kor

jko e-i_" e/z,co,olo_(R',o_)'(R,._,z,z') -., e) (3.21)
r 2kor

where

]_(R',e)=:_-IJ'(R',_n0) (3.22)

I_,,(R',O)= -m3"_ It' _nO (3.23)

where the prime on J indicates differentiation with respect to the argument. Substituting

theseexpressionsinto(3.10)resultsin the expression

e-J_r

e_+(R,Z) = 2korfe(m,O) (3.24)
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where

JO

-e,._ cc_#Uf_,)} X'dR'

-I- {0"/_t)fcm -I'-(jem¢) cm 0/,,m -I"em,_sin 0(.jfm)} X2dZ'

co.¢ fo J_ .(-h_,(jf._) "1-(jhm,)f_,n -I- (jemt)cosOfem+_Zl

+em_ COSO(j fem ) } R_ dR a

Using a midpoint integr&tion to compute the integrals, (3.25) becomes

N.

f.(_,s) = O__., _ {{_,_)3+½L_'/.,,,(.e_+½,0)]+ U,',.,,,)3.f_,,
3--Nal ÷N,-'_ ÷1

+:O_,,,,)i_of.,,,- '[",,,,_)3+½cosoU/_)} R_+½_i
H.: + N',._

•'i" E e3Z,+½co.e ({jh_t}./f_(.R2,e)-I- {jemt}$cos0/em
3=N.I + 1

+1",,,,_)3+½,_n0(jr,,,)} R2"3
,Iv._

+eJ z, co'e E (-{ hm_,}j+½ [j fem( R3+½ , O)] + Uhm,}jfcm + {jemt}j cosOfem
j=l

+{_.,)_+½ co.o(j/_)} R3+½ai

Letting fh(m, 0) be the duaJ of (3.25) we m_.y w'rite (3.8) a,s

OTM,(e,*) 1 2 j'_fe(m,O)sin(mq_)
= 4"_

+ u rfh(o,o)+ 2 _. /'.fh(m,O) cos(,_,)
s,n,=l

"f.(O,O)-I-2mE=ljmf.(m,O)cos(mq_')

(3.25)

(3.26)

(3.27)

(3.28)
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where Aj is the length of the jth boundasy element.
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Chapter 4

Results

The scattering patterns for a test body are shown in figs. 4.1 - 4.4. The structure

is a conducting right circular cylinder of length 1A and radius _. Fig. 4.1 shows both

the TE and TM cases for broadside incidence for mode 0 and as seen these are in good

agreement with corresponding data based on the MOM code CICERO [7], except for

some deviation of the TE curve in the region between 0 and 30 degrees. The results for

mode 1 are shown in fig. 4.2 and again, similar observations are applicable in this case

as well. Fig. 4.3 shows the sum of modes 0 and 1, where we now observe a disagreement

of the TM curves indicating that" the phase associated with modes 0 and 1 must differ

with respect to the data obtained from the CICERO code.

Fig. 4.4 shows the bistatic scattering pattern for the same geometry with axial

incidence. Only mode 1 yields a non-zero solution in this case and the depicted results

again show some deviation from the reference data in the forward and backscattering

regions. Presently, we are investigating the cause of these disagreements and in addition,

we are researching new approaches to improve the storage and computational ei_ciency

of our code.
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Figure 4.1: Mode 0 T._ a_d TE historic scattering pattern from s perfectly conducting

circular cylinder of length 1A a_d radius 0.1_ for broadside incidence.
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Figure 4.2: Mode 1 TM sad TE bistatic scattering pattern from a perfectly conducting

circu]ar cylinder of length 1,%and ra_lius 0.1_ for broa_iside incidence.
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Figure 4.3: Modes 0+1 TM and TE bistatic scattering pattern from a perfectly con-

ducting circular cylinder of length 1)_ and radius 0.1_ for broadside incidence.
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Figure 4.4: TM and TE bistatic scattering pattern from a perfectly conducting circular

cylinder of length 1,k and radius 0.1,X for axial incidence.
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Appendix A

Derivation of Modal Incident

Field

Consider a field incident at a point _: - (r,¢,z) at am angle (01,¢ i) (as indicated in

fig. 2.1 ) of the form

_(0i, ¢_;p, ¢, z) = _%-_0-_

_(e_,¢_;p, ¢, z) = -_e-_o'_

where the _ direction is perpendicular to the plane of incidence and $i direction is in

the plaae of incidence. Using

= _sin 0cos¢ + _ sin Osin ¢ + _ cosO

_' = _ sin 0i cos ¢_ + _ sin 0_ sin ¢i + _ cos 0i

(A.3)

(A.4)

the argument of the exponential becomes

i:o.'F = kor(-i'. _)

= -ko[p_,_o'_o_ - _')+zoo_o']

(A.5)

(A.6)
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in cylindrical coordinste system. Using these and the fact that

_ = -:_ sin8 _ + _cos8 i

8_ = _ cos 81 cos_ i + _ cos_ sin ¢' - _sin e'

:_ = _sinOcos¢ + _cos8 cos_- gsin¢

= ,_sin Osin _ + _cosSsin ¢ + _co6 4,

= _cos8 - 8sin8

(A.?)

(A.S)

(A.9)

(A.10)

(A.11)

(A.1) and (A.2) become

_(#';p,¢ - ¢',z) = [#sin(_b- ¢i) + _cos(¢- ¢i)] e jk°[p'in#'c°'($-_')+zc°'#'] (A.12)

_(0';p,_ - ¢,_) = - [_co_e'cos(_,- ¢') - _cos¢ sin(_- ¢) - _sinO']

• jk°[p'ln¢ ¢°'($-_')+zc°'e_] (A.13)

The previously derived fields may be expanded into a Fourier series in the parameter

¢_ ¢i by first writing (A.1) and (A.2) as

"_,,_(8'; p,z)_ ''(_-¢) (A.14)

OO

"_,,,(o';p,_)_'(*-*') (A.ZS)

and then making the definitions

f(e'; p, ¢ - ¢') = e_kop'_¢ _(_-_')

h(¢; p,¢ - ¢_)= ¢os(¢- ¢')/(e_;p,¢ - ¢')

/o(8i; p, ¢ - ¢_) - sin(¢ - ¢_)/(8'; p, ¢ - ¢')

(A.16)

(AaT)

(A.18)
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Expanding each of these into a Fourier aeries in (_b- _bi) and using the fact that

fC_b) - fC-_b) _ffi_ fro(u) ffi f-mCU)

f(_b) - -f(-_b) _ fro(u) -- -f-re(u)

(A.19)

(A.20)

we have

O0

f(e';p,¢-¢') =/o(e',p) + 2 _ f.(e,p)co_[_(¢-_')]
mw.I

oo

fo(0;p,_- _') = f_(0',p) + 2 _ f_(0',p) cos[m(_- _')1
mffil

oo

f.(Oi;p,_b - _bi) = 2j _ f.m(Oi,p)sin[m(¢- ¢i)]
mml

(A.21)

(A.22)

(A.23)

where

1 fo" e/_Pm°' o_.,,, cos(rnu)duf_(e',p) =

1 fo rf_n(Oi,p) = _ cos ue ih_p_e' o_, cos(mu)du

fo"f_,(Oi, p) = _3_ sin ue/k°p_t_#' _o.u sin(mu)du

(A.24)

(A.25)

(A.26)

Noting the identifies

I fo"ej_.. cos(,_)dz.7_J=(_):;

/o"1 cosxe/B_ cos(rnz)dzj"-I.V'(_) ffi;

-_j'n Jm(fl) f -_ f sin zeitJ_" sin(mz)dz

(A.27)

(A.28)

(A.29)

where the last two are derived from the first by differentiation with respect to fl and

integration by parts respectively, we may write (A.24)-(A.26) as

f,n(Oi,p) = 3_ J,,_(kopsin Oi) (A.30)
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.f_(e_,p) = i"-_j',,,(kopene _)

/.,,,(e,,p)= m e_.f.,,(e,,p)kop sin

With these, we may proceed to rewrite (A.14) as

Ir/t----_O0

_(O_;p,¢,- ¢,_,z) = _d_-_0'

[bI.,,,(e_,p)co_e' - _I.,,,(e',p) _,e ' - _l.,,(e',p),_n e']_,,,c,-_')
le'Jrl,__ O0

or, using (A.19) and (A.20), we have

( - ]
m.----.l

[ " ]1-:esine _ .fo(e',p)+ 2 _ .f,,,(e_,p)co_[,n(¢,-¢,')]
enzffil

In this work, we will use the _b components of each of these equations.

(A.31)

(A.32)

(A.33)

(A.34)

(A.35)

(A.36)
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Appendix B

Maxwell's Equations for

Axisymmetric Media

The usual Maxwell's equations in a source free region are given by

v x_(_')= -j,_,_

v x_(v)= j,,.,c_

v. _(_,)= o

v ._ff)= o

(B.1)

(B.2)

(B.3)

(B.4)

In cylindrical coordinates the electric and magnetic fields may be expanded into a Fourier

series in ¢ as

_(_)- _ _.,(p,z)e j'_$ (B.5) "
W'I. CO

,1_(_)= _ L(p, z)d _*

Substituting these into Maxwell's equations, we obtain

v xe-.,- :m,,,x_= -j_---_zr_
P

v x 7;,_+ :--_;,_x _ = J,_,7_
P

(B.6)

(B.7)

(B.8)
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Appendix C

Derivation of Boundary
Conditions

In this appendix, the axial and perfectly conducting boundary conditions are derived.

C.1 Derivation of Axial Boundary Conditions

Substituting the Fourier series representation of the electric field into the divergence

condition we obtain in the normalized cylindrical coordinate system

v. (_d _) = ko_ _ [i_,e_p +

Thus,

_C_,_-,) + J_,_-, + _(_,e,,)] = 0 (c.1)

as Morgan had previously derived.

obtain

(c.2)

Taking the limit of this expression as R -, 0 +, we

e_p + jrne_¢ = 0 (C.3)

Expanding the derivstive w.r.t. R in

_ [jD2emp -- _(Rem_)] = jp, rhn_z (C.4)
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and taking the limit as R --_ 0÷, we obtain

(c.5)

Combining (C.3) and (C.5) and solving for em¢ we have

(m 2 - 1)e,_¢[n._ ffi 0

In a similar manner we obtain the dual expression

(c.6)

(m 2 - 1)hm_[R-,o+ - 0 (c.T)

For m _ i,the followingaxialconditionholds

e,_lp....o+ = h,_lR.=o+ = 0 (m # 1) (c.s)

To derive the condition for m - 1, lets first consider

•_, = H,, [m_(Re,,_) - R_, _(_,_¢)] (C.9)

As R ---, 0 +, emz -* 0 for m _ 0. Differentiating (C.9) with respect to Z we have

_z = _f_ {mR _÷ - R[ _, (h_,_+ R _h_)

Clearly,as R --*0+ _em: = 0 form _ 0: Differentiating(C.2) with respectto R aSter

dividingby e_,we obtain

_e,,,, +_ [ _(,_,.,_,,,.,)+ fiC,_,e,,,,)]In._-o-,.= -J,,', _e_l_o-,.

Accounting forthe behavior of era:and _em: (C.II) becomes

(C.11)

(C.12)
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To find another equation in terms of _emp and _e,,_, we multiply (C.4) by R

and differentiate it with respect to R to obtain

Letting R --* 0+ we obtain

2] _e,,,_ + m a-_e,_÷ = 0 (C.14)

Substituting (C.14) and (C.5) into (C.12) we obtain

(4-m2)_em_-[-e,n_(incr)=0 R=0, m_0 (C.15)

In an analogous fashion, the dual of (C.15) is given by

(4 - m 2) _h,a+ + h,,+ _(in/_,) = 0 R = 0, m # 0 (C.16)

For e_ and p_ constant in R at the axis of symmetry and for m = 1, (C.15) and (C.16)

reduce to

_e._ = o (c.17)

_h._ = 0 (c.ls)

C.2 Derivation of PEC Boundary Conditions

On a perfect conductor the condition

xT = 0 (c.19)

Substituting the Fourier series expansion for the field into this boundary condition yields

the following condition on each mode

x_. = o (c.20)
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The secondMaxwell'sequationfor the ruth mode is given by (see an appendix)

P

Crossing this equation with _ and noting that _. _ - 0 on the conducting surface, we

obtmn

,x (vxX.,)=o

Carrying out the curl in cylindrical coordates yields

Noting the identities

,_x_= _,_._)

,_x_=_

,_x_= -@(,_._)

we find that the middle term of (C.23) implies

_._,= _.

and the first and third terms may be written

Rearranging terms, we have

_.[v,_pJ,,,,,)-i _h_,]=o

49

(C.22)

(C.23)

(C.24)

(c.25)

(C.26)

(c.2_')

(c.2s)

(C.29)



o1"

(c.30)

and we hsve used the following

_h = kop_

(C.31)

(C.32)

(C.33)
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Appendix D

Evaluation of Finite Element

Contour Integral

D.1 Contour Integral Evaluation along Conducting Sur-
faces

It is shown in the appendix that along perfectly conducting surfaces the conditions

¢, = 0 (D.1)

_¢h - 0 (D.2)

must hold. During the assembly ofthe finitedement equations(i.e.,when the summation

over alldements is performed), those rows and columns of the finitedement matrix

corresponding to nodes on the conducting boundary axe eliminated. As a result,the

corresponding contour integralvanishesaJong a conducting boundary.

Imposing the condition (D.2) resultsin the eliminationof the associatedcontour

integralsinceon the conducting surface

a. (_ x v_¢.) = i. v_¢. = o (D.3)

(checkthisstuff)
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D.2 Contour Integral Evaluation along the Axis of Sym-

metry

In the appendix, the axial boundary conditions are derived

e,n+ = 0 (D.4)

h_¢ = 0 (D.5)

_e,_¢ = 0 (D.6)

_h,_÷ = 0 (D.7)

Conditions (D.4) and (D.5) results in the elimination of the rows and columns of the

assembled finite element matrix associated with nodes on the axis.

Alternatively, since R -, 0 all terms in the contour integral are zero by virtue of the

chosen weighting function.

(may explore the possiblity of a different weighting function which does not guarantee

this)

D.3 Contour Integral Inter-element Connection Cancel-

lation

Since the argument of the contour integrals are tangential fields at the element bound-

ary, they will be continuous between adjacent elements. As a result, the contour inte-

grations along the element intersection cancel.
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Appendix E

Evaluation of the Finite Element

Matrix Elements

In the evaluation of a_j and b$j, integrals of the form

Pab = 1f Ra Zb dRdZ
£

and

(E.1)

ff Ra Z b
Qab - ]] R2_2 _ m2 dRdZ (E.2)

S •

Clearly, Qab exhibits singularities for real _;. To evaluate this integral, consider an integral

of the form

I -- // g( R)ZbdRdZ (E.3)

Se

To evaluate the integral, first transform it to an integration along the element boundary

via

• (R, z) = -g(R, Z)b_lD (E.4)

Using Stokes' theorem

/(v × _). = _,,.v. (E.5)d_ d7
S
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Inserting these into (E.5) yields

ff o(a)ZbdP_dz = I /r. O(a)zb+*da

Via (E.8), (E.I) and (E.2) become respectively

I /r. R'Z_+IdRP.b= Vi7

and

(E.8)

(E.9)

1 RaZ _I

Qab = _/r_ R2_ 2- m 2dR (E.10)

where the contour integration is taken in a counterclockwise fashion. For linear triangular

elements, Fe is represented by a summation of three contours, one for each side of the

triangle. The varisble Z may be thus expressed as

z(a)= u_a+ v_ (E.n)

ZI+I - Zz (E.12)
ul = RI+, - RI

v_ = Zt - ulR_ (E.13)

where

uR.b+,
= v_*(1 + -_-)

= vb+l _ b+l ;'
p---o P

(E.14)

Then Z b+l may be expressed as

Z b+* = (u + av) b+_
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where

(:) -:= m!(. - ,.)! (E.15)

Thus, by writing the integral in (E.10) as a sum of an integral along each side of the

triangttlax element, it be rewritten as

1 s s+l(b+l){u_Ps+lfR,+ , _+P
/ffil pffiO P J_ --

(E.16)

Clearly, integrals of the form

j_ R2,_2_ m2dR (E.17)

for n -- 0,1, ..., a + b + 1 must be solved. For n = 0

I I,_+I

,,.,-o
1(0, m) =

_L. lln(m R_) - ln(m + R_)] 'la'+1-- m>O
2mn IRI

(E.18)

For n = 1 it is easily shown that

i Il(l,m) _ [In(m - R_) + in(m + R0¢)]_+'-- m>O (E.19)

Using the definition of the principle branch of the natural logarithm in the equations

above guarantees that the singu]azity is properly handled. For values of n > i, the

recursiveformula [17]

m 2

I(.,,.) = x(.,o) + _-x(. - 2,_) (E.20)

is used. Thus, (E.16) may be written in terms of I as

' +'+'CO"+= b-7-i'_:_ b+l ' ,,p+'.v(,+.,,,,.,.,1
Ill prO P

(E.21)
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In a similax fashion,

1 3_-1 1) R=+n+_ 1_+'I= _- g¥_¥i._

The shape functioniswrittenin expanded form as

where

We had derivedin section2.1

Noting that

1 £

_'(R, z)= _-n_((',+ #?z +-r?R)

a' = fi(#_-_?

(,7 = Z_R_- Z_R_

_? = Zl-Z_

o:.j= ff [-I.,.Rv,(R#_).v,(s,v_)+,.ut,v;]dS"
Se

[ n__,1 .R_

1 [ee

Substituting these into (E.28) and reducing we obtain the desired result

,,,'.,= [-('_('_Q,o- (#?('_+ #_o,'.)Q,,- 2(-f?('_+ _(','.)Q:o

56

(E.22)

(E.23)

(E.24)

(E.25)

(E.26)

(E.27)

(E.28)

(E.29)

(z.30)



In a similar manner, we may write

M

-/i _ [(.__'_ (. _1
and likewiseas

(E.31)

(E.32)

(E.33)

(E.34)
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Appendix F

Boundary Integral Matrix

Elements

In thisappendix, the elements for the discreteboundary integralsystem are pre-

sented.

F.1 Elements of P_

[P_]_# = 0

]_'+' - gaY(R,,e', z,+l, Z,IR'eR'

Z3+,

%

(F.I)

(F.2)

(F.3)

(F.4)

(F.5)

(r.6)

(F.7)
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F.2

Zj.I. I • 2

0

Elements of P_

(F.8)

(F.9)

F.3

[_] = o1 ij

[P'_I]i./ = (Zi+½ - Z1) /R_+' Jg_)'(R2,R',Zi+½,ZI) R/dR'

[P:_:s]ij - (Z,+½ - Z3) [ P_ jg_)' (R,,R',Z,+½,Z3)R'dR '
J P_÷ I

[_,_1,, (z_ z_)['_""_,)',-, _,= - .70;;, L_+½, ,Z3,Z_)R'dR'
JR i

[e_],j = f._'+,_(z_- Z')O_)'(R,+½,R,,Z3,Z')R,dZ'

Elements of Q_

(F.10)

(F.Zl)

(F.12)

(F.13)

(F.14)

(F.15)

(F.16)

(FAT)

(F.18)

[P_+' (_1

(F.19)

(F.20)

(F.21)
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F.4

J_

[_],j= o

= J.Ra --a:om _ i+=

[o_',],,--o

[o_],_ = f _ _a_(R,+_,R',z_,z_)R'eR'

Elements of Q_'

(F.22)

(F.23)

(F.24)

(F.25)

(F.26)

(F.27)

[Qx_.,z] = /R.,+, _ 3g_),(Ri.½,R,,Zz, Zx)R,dR '
ij aR_

[o,",]= f" _,_,'(R,÷=,_,,z,,.,)_,,,_,
i.i zi+:

[o,;] = ./''÷'_,,.c,_',.-, °,ij JR_ _Jt_+ ,_.,Zz, Zs)R'dR'

[o,';] - i _''''J J'R, - jg_)'(R2'R''ZI+½'ZxlR'dR'

[o.*;]= J'-j¢...,'c_,,R,,_,+_,z')_',_'
iy z_+x

Ri

a/z_

z._÷_

a/t,

(F.2S)

(F.29)

(F.30)

(F.31)

(F.32)

(F.33)

(F.34)

(F.35)

(F.36)
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F.5 Elements of Qt

].31 ----

_+1 [g_) . (2)'= +Omg;_ (Ri+½,R,Za,Z1)] RtdR '

Z3+s

[o_],_'= _I'_*'[g_J+jmg_'(R,÷_,R',z_,z_]R'dR'

[O_l]/i -- _+' [gO)+jmg_)'(R,,Rt, Zi+},Z1)] R'dR'

[o,,],_'= ]'.,.. [g_)+_.,g_Y(R,,R,,z,+_,z')]z'az'

= -['_÷'[g_+_,,,g_'(R,,R',Z,+;,Z_]R'dR'

/_i+, [g_,+ Jmg_)'(R'+}'R"Zs'Z')] Z'dZ'

• (2)',t''+'[g_)+_,,,o_,(R,+;,R,z_,z_)]R'dR'

F.6 Self-Cell Evaluation

(F.37)

(F.38)

(F.39)

(F.40)

(F.41)

(F.42)

(F.43)

(F.44)

(F.45)

The integrals in the matrix elements [P_]il, [Q_'k]i, and [Qik],i contain integrable

singularities. They could be integrated numerically without modification as long as the

singularity point is avoided, but costs excessive computation time. To avoid the resulting

excessive computation time and innscuracies, the integrals are evaluated as in [5].

For self-cell integrals involving gin, Glisson gives

/;I gm( Ri+½ , R', Z,+½ , Z')R'dI'

61



where

,, [_-i_o R,_ 1= __127r/I, /:L Ro cos(_u)R'- dud['

+I(R_+½, l_+½,l,, 12) (F.46)

I [(/2 -- 11) -- (/2 -- l)lIIC[2 -- [) -- (l -- /1)lnC/-- /1)]+'_
.(F.47)

and where K is the complete elliptical integral of the first kind, I may be either Z or R

and

A]so_

R, = %/(R_+½- m) 2+ (Z_+}- Z')2

_ = _/(R,+½+R')_+ (&+½- z')*

(F.48)

(F.49)

Ro = _a 2 - 2a_+½a + (Z_+½ z')2i+½+ a'2 co,u -
(F.50)

(F.51)

The first and second integrals of (F.46) may be computed using an open interval numer-

ical scheme that also avoids the midpoint.

The integral expression for the self-cell of P_ may be rewritten as

I-: l-/;:.,,, 7_ 2_ cos(m_)d_

i/_(I+_)e -_° _]_ 2[_o cos(mu)d R_dZ'

= ~ sin (_) cos(mu)d l_dZ' (F.52)
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where we have used the identity

i - cos u = 2 sin_( (F.53)

The solution to (F.52) is

_+1 _" _ Ro c°s(mu) sin2(_

4[_._+ (z,+_-z,)_]_/_ d,,,_dz'
R 2

(F.54)

where

I'(R, l, 11,12)
lr tt2

= _ {(/-- [1)111

+(,.-,)In[.. + _/(,, - t), + R,_,]

-(z- t_)l_(t- t.) - (t2 - t)l_(Z_- 0} (F.55)

In the same manner we hsve

_u2n_+| _I3/2]2 [R 2 tP dulgdl'
[ _+½ + (hi+½ - n')-j

mRi+_.

+---_ r(R.+½. R.+½._. _+ _) (F.56)

63



where

/x =R/ I2=R/+l li+ ½=Ri+½ I'=R' fora=l

1: = Z_+: /2 = Z_ li+ ½ = Z_+½ 1' = Z' for a = 2

I:=R/+I I2=R/ li+½=Ri+ ½ I'=R' fora=3

(F.57)

Finally, we treat ear.h term in [Q_] ii seperate]y and obtain

'- cos _ cos(mu)R' - dudi'

-kI(R, 1,11,12)

{ /i, jJ i, ;/.,o'f[ (l + j_l°) e-j_° sln(mu)sin eR'_2-"_
+jrrt

muiRi+| 3/2] dut_dl'
[R 2 ill I') 2]21 '+½ +(ti+½-

+'i"";:+i r(R,+t., .,,+½,i_,h)} (F.58)

where (F.57) is used to determine the expression for each value of a.

The self cells invo]ved in the other matrices contain non-singtflax integrands and may

thus be integrated numerically without modification.
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